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Abstract

Global food security is seriously threatened by climate change, which calls for reliable techniques
to forecast crop yields under unpredictable environmental circumstances. The nonlinear and
spatiotemporal relationships between soil characteristics, climate variables, and remote sensing
indicators are frequently missed by conventional statistical and machine learning models. This
paper suggests a hybrid deep learning architecture that combines Long Short-Term Memory
(LSTM) networks for modeling temporal dependencies in weather and climate data with
Convolutional Neural Networks (CNNs) for extracting spatial characteristics from remote sensing
imagery. Utilizing datasets from many sources, such as soil moisture records, regional
meteorological data, and satellite-derived vegetation indices (NDVI, EVI),

When compared to stand-alone machine learning techniques like Random Forests and Gradient
Boosting, the model performs better. The hybrid deep learning model offers robustness under harsh
weather conditions and enhances yield prediction accuracy by up to 18% when compared to
baseline approaches, according to experimental data on U.S. maize and wheat production regions.
The results demonstrate how remote sensing and artificial intelligence can be combined to promote

climate-smart agriculture and well-informed policy decisions for sustainable food systems.
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Introduction

With rising temperatures, changed rainfall
patterns, and an increase in the frequency of
extreme weather events endangering global
food security, agriculture is one of the
industries most at risk from climate change
(Lobell et al., 2011; Wheeler & von Braun,
2013). Therefore, in order to design adaptive
strategies and guarantee  sustainable
agricultural practices, policymakers, farmers,
and agribusinesses now depend heavily on
accurate crop yield forecast (Lesk et al.,
2016).

Statistical regression models or single-source
data inputs, including weather or soil data,
have been the mainstays of traditional yield
forecasting techniques (Tack et al., 2017).
These methods offer valuable insights, but
they frequently fall short in capturing the
intricate relationships among plant growth
dynamics, biophysical circumstances, and
climate variability (You et al., 2017). With
the growing availability of high-resolution
remote sensing data from satellites like
MODIS and Sentinel, recent developments in
artificial intelligence (Al) and machine
learning (ML) present intriguing substitutes
(Huang et al., 2021).

Convolutional neural networks (CNNs) and
long short-term memory (LSTM) networks
are two examples of deep learning models
that have demonstrated great promise in

simulating the temporal and spatial features
of agricultural systems (Khaki & Wang,
2019; Jiang et al., 2020). However, in the face
of climate stressors like heat waves and
droughts, standalone models frequently lack
resilience. Hybrid architectures that integrate
temporal and spatial modeling capabilities
can provide improved resilience and
prediction accuracy in order to overcome this
constraint (Abiodun et al., 2018).

This study presents a hybrid deep learning
system that combines LSTMs for modeling
sequential meteorological and climate data
with CNNs for obtaining spatial vegetation
attributes from satellite imagery. The work is
to increase the accuracy of yield forecast
under various climatic situations and offer
decision support for climate-resilient
agriculture by utilizing multi-source datasets.

There are three goals for this study:

1. to create a CNN-LSTM hybrid model that
forecasts yields by combining meteorological
and remote sensing data.

2. to compare the model's performance with
traditional machine learning techniques in the
main crop regions in the United States.

3. to evaluate the hybrid model's resistance to
climate extremes, offering guidance for
planning food security and adaptation
measures.
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The results of this study add to the expanding
body of knowledge on Al-driven climate-
smart agriculture by offering a data-driven,
scalable strategy to promote sustainable crop
management in the face of climate change.

Literature Review
Crop yield prediction: from statistics to
deep learning

Regression or process-based models with few
weather/soil covariates were used in early
yield projections; these methods had trouble
with  the nonlinearities and  spatial
heterogeneity brought about by climatic
variability (Lobell et al., 2011; Wheeler &
von Braun, 2013). Although ML techniques
(RF/GBM/SVM) increased accuracy with
richer Earth-observation streams, they
continued to underfit intricate spatiotemporal
relationships (Lesk et al., 2016; You et al.,
2017). CNNs capture spatial patterns in
reflectance/vegetation indices, while RNNs
(e.g., LSTM) capture temporal growth
dynamics. Deep learning advanced the field
by learning hierarchical representations
directly from data (Khaki & Wang, 2019;
Jiang et al., 2020).

Remote sensing for agricultural analytics

For vegetation condition (NDVI/EVI),
canopy structure, and stress, dense,
standardized time series are provided by
moderate-to-high ~ resolution  satellites
(MODIS, Sentinel-2) (Didan, 2015; Drusch
etal., 2012; Huete et al., 2002; Tucker, 1979).

Scalable monitoring from field to regional
scales is made possible by the correlations
between these indices and phenology,
biomass, and yield. According to studies,
prediction across crops and agroecological
zones is improved when multi-temporal
optical signals are fused with supplementary
soil-moisture and topography characteristics
(Huang et al.,, 2021; Maimaitijiang et al.,
2020).

Temporal modeling and climate extremes

Sequence models (LSTM/GRU) explicitly
learn carry-over effects of weather anomalies
(heatwaves, drought spells) on growth stages,
outperforming static models, especially
under extremes (Hochreiter & Schmidhuber,
1997; Jiang et al., 2020). ConvLSTM further
integrates spatial-temporal convolutions but
may be data-hungry and computationally
intense for regional forecasting (Shi et al.,
2015).

Hybrid CNN-RNN architectures for yield

Hybrid designs—CNNs for spatial feature
extraction from images and LSTMs for
weather/soil ~ time  series—consistently
improve vyield prediction by leveraging
complementary signals (You et al., 2017;
Khaki & Wang, 2019; Jiang et al., 2020).
Attention mechanisms and late-fusion layers
further enhance robustness by weighting time
steps or modalities during climate shocks
(Abiodun et al., 2018). Despite progress,
open challenges remain: (i) generalization
across regions/years with distribution shifts,



N
<z

International journal of agricultural
sciences and veterinary medicine

(i) explainability for agronomic decisions,
and (iii) uncertainty quantification for risk-
aware planning.

Recent climate-analytics research for U.S.
agriculture integrates climate, yield, supply-
chain, and policy data to quantify systemic
risk. One multi-region study reported
sustained Midwest warming (12.5 °C in 1980
to 13.8 °C in 2010), with RCP 4.5 projections
reaching 14.5 °C by 2030, alongside
projected yield declines for key crops (maize:
9.0 — 8.0 t/ha; soybeans: 2.8 — 2.5 t/ha),
rising transportation costs, and deteriorating
food-security  indicators—evidence that
biophysical shocks propagate into logistics
and market outcomes. These findings
underscore the need for multimodal,
spatiotemporal learning that joins remote-
sensing with weather sequences to anticipate
both agronomic and economic impacts
(zerine et al., 2021).

Research Questions

1. Can a CNN+LSTM  hybrid
outperform strong ML baselines for
regional crop yield prediction?

2. Does multimodal fusion (imagery +
weather/soil) improve robustness
under climate extremes?

3. Which features/time windows drive
predictions, and how uncertain are
forecasts?

Data collection
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1. Remote sensing: MODIS (250-500
m) for dense time series; Sentinel-2
Level-2A  (10-20 m) fortnightly
composites. NDVI, EVI, NIR, red-
edge bands, and vegetation texture
are examples of derived indexes.

2. Climate and meteorology: solar
radiation, PET, VPD, precipitation,
daily temperature (max/min), and
gridded reanalysis or station-
interpolated sources.

3. Soil and management: moisture
content, organic matter, and texture;
if accessible, optional management
proxies (planting dates,
cultivar/irrigation flags).

Preprocessing

1. Cloud masking and compositing (QA
bands — temporal interpolation gap-
filling).

2. zonal statistics across field polygons
or administrative entities; spatial
harmonization to a single grid.

3. Temporal alignment: normalize by
agro-climatic season (planting to
harvest); aggregate weather to a
corresponding cadence; resample
imagery to weekly or monthly
intervals.

4. Lags, phenology markers (green-
up/peak), and cumulative stress
measures (rising degree days, heat
degree hours, and dry spell counts)
are examples of feature engineering.

5. Leave-one-year-out and region-held-
out splits are used to evaluate
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generalization in the event of a
distribution shift.

6. Labels: Official yield data for target
crops (such maize and wheat) at the
county or district level, spanning 8—
12 years.

Model Architecture
CNN's spatial branch:

Image patches or per-unit multi-band stacks
around periods of peak growth are used as
input.

Backbone: lightweight CNN to extract spatial
features (canopy vigor, texture) (e.g., 2-4
conv blocks + global average pooling).
Temporal LSTM branch:

Multiple variables (weather, soil moisture,
and time-aggregated indices) are input.
Stack: 1-2 LSTM layers (hidden 64-128) +
dropout; if causality is not needed, a
bidirectional layer is unnecessary.

Fusion involves passing through dense layers
to scalar yield, applying attention over time
or modalities, and concatenating CNN
embedding with the final LSTM state.

Loss: Heteroscedastic loss or MSE/Huber
with uncertainty head via MC-Dropout.
Regularization includes time-aware
augmentation (random missingness masks),
dropout, and early stopping.

ISSN: 2320-3730
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Training & Evaluation

e Baselines: Linear regression,
Random Forest, XGBoost,
standalone CNN, standalone LSTM.

e Metrics: RMSE, MAE, R2R"2R2;
climate-extreme slices
(drought/heatwave years); Diebold-
Mariano tests for forecast skill.

e Robustness:  train-test  across
years/regions; covariate-shift checks;
calibration (reliability curves, CRPS
if probabilistic).

1 Explainability:

e CNN: Grad-CAM on index
bands/patches to reveal spatial
drivers.

e Temporal: SHAP/Integrated
Gradients  for  feature/time-step
importance.

[J Ablations: remove imagery or weather;
swap attention off; vary sequence length;
compare ConvLSTM variant.

Deployment Considerations

Batch-inference pipeline using scheduled
composites; uncertainty thresholds to flag
low-confidence regions; simple dashboard
for decision-makers.
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Methods

2.1 Study Area and Datasets

From 2011 to 2024, we collected multi-year
crop yield data for four U.S. agricultural
regions: the Pacific Northwest (wheat),
California Central Valley (tomato), Great
Plains (wheat), and US Midwest (maize)
(Table 1). NDVI, EVI, red-edge bands, and
texture measurements were provided by
Sentinel-2 L2A (10-20 m) and MODIS
(250-500 m) surface reflectance products,
which were used as remote sensing inputs
(Tucker, 1979; Huete et al., 2002; Drusch et
al., 2012; Didan, 2015). Meteorological
factors aggregated to weekly cadence during
each crop's growth season included daily
maximum/minimum temperature,
precipitation, potential evapotranspiration
(PET), solar radiation, and vapor-pressure
deficit (VPD) from station-interpolated and
reanalysis datasets. Where possible, soil
layers (texture, organic matter, and surface
soil-moisture) were combined. The official
data for the relevant crop year and
administrative unit were yield labels.

To align with prior U.S. climate-risk
assessments, we benchmark our experimental
window and climate scenario design against
RCP 4.5 and summarize comparable
indicators  (temperature  trends, vyield
baselines, and supply-chain proxies) reported
in earlier work. Specifically, we use
maize/soy reference values from Midwest
and Great Plains regions (e.g., 9.0 t/ha maize
in 2010 with a projected decline to 8.0 t/ha
by 2030) to set prior ranges for model
calibration and to define extreme-year slices
in evaluation. This harmonization allows
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direct comparison between statistical/ML
approaches and our hybrid deep model
(Zerine et al., 2021).

2.2 Preprocessing and Feature
Engineering
Compositing and cloud masking.

Cloud/shadow removal was done using
Sentinel-2 QA bands and MODIS quality
flags; linear interpolation and temporal
median compositing were employed to fill up
the remaining gaps.

Harmonization of space. We calculated zonal
statistics (means, SDs, and Haralick texture
on NDVI/EVI) across polygons (fields or
admin units) after reprojecting all rasters onto
a common grid.

alignment of time. Weather variables were
aggregated to the same biweekly cadence
after imagery was resampled to biweekly
stacks. Normalization was applied to the time
axis from planting (t = 0) to harvest (t=T).
covariates that are designed. Heat-stress
hours, drought-day counts, cumulative
precipitation/PET, growing-degree days
(GDD), and phenology markers (peak, green-
up) were all calculated. Training-fold
statistics were used to normalize continuous
features.

2.3 Model Architecture (Hybrid CNN +
LSTM)

The proposed network has two branches:
(CNN) spatial branch. Using multi-band
image patches focused on peak growth
windows, a lightweight CNN with three
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convolutional blocks—three-by-three
kernels, BN, ReLU, and 0.3 dropout—and
global average pooling generates a spatial
embedding.

branch of time (LSTM). The multivariate
time series (weather, soil-moisture, and
temporally aggregated indices) are ingested
by a 2-layer LSTM (hidden = 128, dropout =
0.3), which produces a temporal embedding
(Hochreiter & Schmidhuber, 1997).

head and fusion. Concatenating embeddings
and passing them through two dense layers
and a modal attention module results in a
scalar yield output. To account for predictive
uncertainty, we train using a Huber loss plus
an auxiliary variance head (heteroscedastic
regression) (Huber, 1964).

2.4 Training Procedure

According to Loshchilov and Hutter (2019),
we employ AdamW (Ir = 3e-4 with cosine
decay), batch size = 64, early halting
(patience = 8), and weight decay le-4. To
simulate erratic observations, inputs are
supplemented with tiny temporal jitters and
random missingness masks.

2.5 Baselines

We compare against: Linear Regression,
Random Forest (Breiman, 2001), XGBoost
(Chen & Guestrin, 2016), CNN-only
(spatial) and LSTM-only (temporal). All
baselines were tuned via grid search on
validation folds.

2.8 Reproducibility

All experiments used PyTorch with fixed
seeds, tracked via run manifests (code,
commit, data hashes). Data splits and
preprocessing pipelines are scripted and
export figure/table artifacts directly

Results
3.1 Overall Performance

The hybrid CNN+LSTM outperformed
all baselines on the test folds (Table 2).
Averaged across crops/regions, it
achieved RMSE = 0.58 t/ha, MAE =
0.45 t/ha, and R? = 0.84, improving
RMSE by 22% over Linear Regression,
26% over Random Forest, 22% over
XGBoost, and by 16-18% relative to
CNN-only/LSTM-only. The RMSE
comparison is visualized in Figure 2; the
Predicted vs. Observed scatter shows
tight alignment around the 1:1 line
(Figure 5), consistent with the R2 values.

3.2 Learning Dynamics

The learning curve (Figure 3) indicates
steady validation RMSE reduction with
no divergence from training loss,
suggesting adequate regularization and
that the model benefits from longer
training  (until  early  stopping).
Convergence was typically reached by
epoch ~30-35.

Figure 3. Learning curve (epochs vs.
RMSE) — chart_learning_curve.png.

3.3 Ablation Study



N
<z

International journal of agricultural
sciences and veterinary medicine

The complementarity of modalities is
confirmed by ablations (Table 3).
When imagery was removed
("weather-only LSTM"), the RMSE
decreased from 0.58 — 0.68 t/ha
(+0.10) to 0.70 t/ha (+0.12) when
weather was removed ("imagery-only
CNN™). Performance was slightly
harmed by turning off attention
("concat only"), suggesting that
attention aids in  prioritizing
important time steps and modalities
(0.61 t/ha, +0.03). Sequence length
was important; 24-week sequences
were almost ideal (0.59 t/ha), but 6-
week sequences had a worsened error
(+0.05).

Ablation_Study.csv is Table 3's
ablation study.

3.4 Robustness to Climate Extremes

The hybrid increased modestly from
0.58 — 0.63 t/ha (+9%) on extreme-
year slices (drought/heat anomalies),
while Random Forest and XGBoost
increased by around 22% (0.78 —
0.95 t/ha) and 18% (0.74 — 0.87
t/ha), respectively. The hybrid
outperformed XGBoost in year-wise
DM tests (median p < 0.05),
suggesting  noticeably  superior
forecasting ability during difficult
seasons.

ISSN: 2320-3730
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Feature
Attribution

Importance and  Spatial

In line with agronomic assumptions
regarding canopy vigor and moisture/heat
stress, global attributions (Figure 4,
Feature_Importance.csv) show that
NDVI_peak and EVI_avg are the primary
drivers, followed by red-edge variance, soil-
moisture average, and temperature maxima.
Grad-CAM maps (qualitative; not shown)
provided confidence in spatial reasoning by
focusing on high-biomass areas inside fields
close to peak vegetative growth.

3.5 Calibration and Uncertainty

Reliability curves showed slight
under-confidence early in the season
that increased following canopy
closure, while predictive intervals
from the heteroscedastic head
attained near-nominal coverage (e.g.,
90% PI encompassing ~88-92% of
test targets across areas).

3.6 Practical Impact

Assuming regional adoption, the error
reduction (vs. common baselines)
implies earlier and more reliable
identification of low-yield risk zones,
enabling targeted irrigation/nitrogen
strategies and inventory hedging for
agribusiness. The inference pipeline
supports biweekly updates aligned
with satellite compositing windows.
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Discussion
Summary of principal results.

This study demonstrates that for regional
crop-yield prediction, a hybrid CNN+LSTM
model that combines temporal weather/soil
sequences with spatial information from
satellite imagery performs better than single-
branch deep networks (CNN-only, LSTM-
only) and tuned statistical learners (e.g.,
linear models, Random Forest, XGBoost).
The findings validate our central hypothesis:
crop yield variability under climate stress is a
reflection of temporal dynamics in heat,
moisture, and radiation as well as spatial
canopy patterns (represented by multi-
spectral indices and textures)—signals that
are best modeled in combination rather than
separately (Khaki & Wang, 2019; Jiang et al.,
2020).

Our gains align with evidence that Al-
assisted decisions and precision irrigation can
materially reduce water use (~40%) and
evaporation losses (up to ~60% with drip
systems), while sustainable practices
(regenerative/conservation tillage, cover
crops, agroforestry) strengthen soil and
resilience. Improved yield forecasts therefore
translate directly into resource targeting and
risk reduction at farm and supply-chain levels
(zerine et al., 2025).

Multimodal gains and climate resilience.
Ablation studies show that each modality has

complementing benefits: removing
weather/soil signals decreases resilience

10
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during extended heat/drought spells, while
removing imaging erodes performance in
seasons where canopy vigor and spatial
variability predominate. A key characteristic
under continuous warming and hydrologic
variability is that the hybrid model
deteriorates more gracefully in extreme-year
slices, indicating that spatiotemporal fusion

better captures stress episodes (e.g.,
persistent ~ VPD/temperature  anomalies
coincident with NDVI/EVI downturns)

(Lobell et al., 2011; Wheeler & von Braun,
2013).

Interpretability and domain consistency.

In accordance with agronomic theory on
biomass accumulation, water stress, and heat
damage, feature attributions regularly raise
the NDVI/EVI at peak growth, red-edge
variability, soil-moisture, and temperature
maxima. By focusing on high-biomass zones
and field boundaries, qualitative saliency
over picture patches supports the idea that the
CNN branch learns meaningful canopy
structure instead of sensor artifacts.
Agronomic decision-making is facilitated
and trust is enhanced by this model-domain
alignment.

Uncertainty for operational decisions.

The system generates calibrated intervals that
stakeholders can use to threshold activities by
combining point predictions  with
heteroscedastic uncertainty (including MC-
Dropout sampling). For example, flag zones
for supplemental irrigation or scouting only
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when risk + confidence above user-set
requirements. This directly aids risk-aware
supply chain and insurance planning and is
more helpful than deterministic ratings
during turbulent seasons.

Positioning within prior work.

Prior studies leveraged either (i) statistical or
tree-based models on tabular climate/soil
features or (ii) purely image-driven deep
models (You et al., 2017; Khaki & Wang,
2019; Jiang et al., 2020). Our results extend
this literature by demonstrating that late-
fusion with attention improves
generalization across Yyears/regions and
retains performance under extremes. They
also connect to systems-level evidence that
climate shocks propagate into logistics and
markets—heightening the value of earlier,
more precise forecasts for policy and
business (Zerine et al., 2021).

Limitations.

Label aggregation: county/district yields
obscure within-unit variability; field-scale
labels would sharpen supervision.

(2) Management data gaps: planting dates,
cultivars, irrigation, and nitrogen rates are
incompletely observed and may confound

responses.
(3) Sensing gaps: optical clouds and revisit
timing can leave critical phenophases

undersampled; integrating SAR can mitigate.
(4) Distribution shift: extrapolation to
unseen climates/regions remains

11
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challenging; explicit domain adaptation is
needed.

(5) Compute & data demands: training
multimodal models is resource-intensive;
lightweight backbones and distillation should
be explored.

(6) Causality: explanations are associative;
management recommendations warrant field
trials or coupling with process-based crop
models.

Future work.

In order to mitigate cloud/sparsity issues, we
intend to: (i) fuse Sentinel-1 SAR and SMAP

moisture; (i) test temporal
transformers/convLSTM and graph
spatiotemporal models to better encode
regional structure; (iii) integrate

APSIM/DSSAT signals for counterfactuals
and physics-informed constraints; (iv) apply
domain adaptation for non-stationary
climates; and (v) implement a calibrated
biweekly inference pipeline with dashboards

and active-learning loops for ground
scouting.

Conclusion

To anticipate agricultural yields under

climate variability, we provide a multimodal,
spatiotemporal deep learning framework that
blends LSTM-modeled weather/soil
sequences with CNN-extracted spatial
information from remote sensing. The hybrid
model produces interpretable drivers that are
in accordance with agronomic knowledge,
calibrates uncertainty for risk-aware
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decision-making, and outperforms strong
baselines across a variety of U.S. areas and
crops. It also maintains greater robustness
during extreme seasons.

These gains translate into actionable value,
such as targeted irrigation and nutrient
management, inventory and transport
planning, climate-aware pricing and hedging,
and earlier identification of at-risk zones,
given documented warming trajectories and
supply-chain  wvulnerabilities in  U.S.
agriculture (Lobell et al., 2011; Wheeler &
von Braun, 2013; Zerine et al., 2021).
Generalization and decision utility can be
further enhanced by future additions that
include domain adaptability, physics-
informed limitations, and SAR/soil-moisture
sensing. The method provides a workable
route to agronomy and agribusiness activities
that are climate-resilient and is scalable and
reproducible.
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