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Abstract 

Global food security is seriously threatened by climate change, which calls for reliable techniques 

to forecast crop yields under unpredictable environmental circumstances. The nonlinear and 

spatiotemporal relationships between soil characteristics, climate variables, and remote sensing 

indicators are frequently missed by conventional statistical and machine learning models. This 

paper suggests a hybrid deep learning architecture that combines Long Short-Term Memory 

(LSTM) networks for modeling temporal dependencies in weather and climate data with 

Convolutional Neural Networks (CNNs) for extracting spatial characteristics from remote sensing 

imagery. Utilizing datasets from many sources, such as soil moisture records, regional 

meteorological data, and satellite-derived vegetation indices (NDVI, EVI), 

When compared to stand-alone machine learning techniques like Random Forests and Gradient 

Boosting, the model performs better. The hybrid deep learning model offers robustness under harsh 

weather conditions and enhances yield prediction accuracy by up to 18% when compared to 

baseline approaches, according to experimental data on U.S. maize and wheat production regions. 

The results demonstrate how remote sensing and artificial intelligence can be combined to promote 

climate-smart agriculture and well-informed policy decisions for sustainable food systems. 
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Introduction  

With rising temperatures, changed rainfall 

patterns, and an increase in the frequency of 

extreme weather events endangering global 

food security, agriculture is one of the 

industries most at risk from climate change 

(Lobell et al., 2011; Wheeler & von Braun, 

2013). Therefore, in order to design adaptive 

strategies and guarantee sustainable 

agricultural practices, policymakers, farmers, 

and agribusinesses now depend heavily on 

accurate crop yield forecast (Lesk et al., 

2016). 

Statistical regression models or single-source 

data inputs, including weather or soil data, 

have been the mainstays of traditional yield 

forecasting techniques (Tack et al., 2017). 

These methods offer valuable insights, but 

they frequently fall short in capturing the 

intricate relationships among plant growth 

dynamics, biophysical circumstances, and 

climate variability (You et al., 2017). With 

the growing availability of high-resolution 

remote sensing data from satellites like 

MODIS and Sentinel, recent developments in 

artificial intelligence (AI) and machine  

learning (ML) present intriguing substitutes 

(Huang et al., 2021). 

Convolutional neural networks (CNNs) and 

long short-term memory (LSTM) networks 

are two examples of deep learning models 

that have demonstrated great promise in  

 

 

 

simulating the temporal and spatial features 

of agricultural systems (Khaki & Wang, 

2019; Jiang et al., 2020). However, in the face 

of climate stressors like heat waves and 

droughts, standalone models frequently lack 

resilience. Hybrid architectures that integrate 

temporal and spatial modeling capabilities 

can provide improved resilience and 

prediction accuracy in order to overcome this 

constraint (Abiodun et al., 2018). 

This study presents a hybrid deep learning 

system that combines LSTMs for modeling 

sequential meteorological and climate data 

with CNNs for obtaining spatial vegetation 

attributes from satellite imagery. The work is 

to increase the accuracy of yield forecast 

under various climatic situations and offer 

decision support for climate-resilient 

agriculture by utilizing multi-source datasets. 

 

There are three goals for this study: 

 

1. to create a CNN–LSTM hybrid model that 

forecasts yields by combining meteorological 

and remote sensing data. 

2. to compare the model's performance with 

traditional machine learning techniques in the 

main crop regions in the United States. 

3. to evaluate the hybrid model's resistance to 

climate extremes, offering guidance for 

planning food security and adaptation 

measures. 
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The results of this study add to the expanding 

body of knowledge on AI-driven climate-

smart agriculture by offering a data-driven, 

scalable strategy to promote sustainable crop 

management in the face of climate change. 

 

Literature Review  

Crop yield prediction: from statistics to 

deep learning 

 

Regression or process-based models with few 

weather/soil covariates were used in early 

yield projections; these methods had trouble 

with the nonlinearities and spatial 

heterogeneity brought about by climatic 

variability (Lobell et al., 2011; Wheeler & 

von Braun, 2013). Although ML techniques 

(RF/GBM/SVM) increased accuracy with 

richer Earth-observation streams, they 

continued to underfit intricate spatiotemporal 

relationships (Lesk et al., 2016; You et al., 

2017). CNNs capture spatial patterns in 

reflectance/vegetation indices, while RNNs 

(e.g., LSTM) capture temporal growth 

dynamics. Deep learning advanced the field 

by learning hierarchical representations 

directly from data (Khaki & Wang, 2019; 

Jiang et al., 2020). 

 

Remote sensing for agricultural analytics 

 

For vegetation condition (NDVI/EVI), 

canopy structure, and stress, dense, 

standardized time series are provided by 

moderate-to-high resolution satellites 

(MODIS, Sentinel-2) (Didan, 2015; Drusch 

et al., 2012; Huete et al., 2002; Tucker, 1979).  

 

 

 

Scalable monitoring from field to regional 

scales is made possible by the correlations 

between these indices and phenology, 

biomass, and yield. According to studies, 

prediction across crops and agroecological 

zones is improved when multi-temporal 

optical signals are fused with supplementary 

soil-moisture and topography characteristics 

(Huang et al., 2021; Maimaitijiang et al., 

2020). 

 

Temporal modeling and climate extremes 

 

Sequence models (LSTM/GRU) explicitly 

learn carry-over effects of weather anomalies 

(heatwaves, drought spells) on growth stages, 

outperforming static models, especially 

under extremes (Hochreiter & Schmidhuber, 

1997; Jiang et al., 2020). ConvLSTM further 

integrates spatial–temporal convolutions but 

may be data-hungry and computationally 

intense for regional forecasting (Shi et al., 

2015). 

 

Hybrid CNN–RNN architectures for yield 

 

Hybrid designs—CNNs for spatial feature 

extraction from images and LSTMs for 

weather/soil time series—consistently 

improve yield prediction by leveraging 

complementary signals (You et al., 2017; 

Khaki & Wang, 2019; Jiang et al., 2020). 

Attention mechanisms and late-fusion layers 

further enhance robustness by weighting time 

steps or modalities during climate shocks 

(Abiodun et al., 2018). Despite progress, 

open challenges remain: (i) generalization 

across regions/years with distribution shifts,  
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(ii) explainability for agronomic decisions, 

and (iii) uncertainty quantification for risk-

aware planning. 

 

Recent climate-analytics research for U.S. 

agriculture integrates climate, yield, supply-

chain, and policy data to quantify systemic 

risk. One multi-region study reported 

sustained Midwest warming (12.5 °C in 1980 

to 13.8 °C in 2010), with RCP 4.5 projections 

reaching 14.5 °C by 2030, alongside 

projected yield declines for key crops (maize: 

9.0 → 8.0 t/ha; soybeans: 2.8 → 2.5 t/ha), 

rising transportation costs, and deteriorating 

food-security indicators—evidence that 

biophysical shocks propagate into logistics 

and market outcomes. These findings 

underscore the need for multimodal, 

spatiotemporal learning that joins remote-

sensing with weather sequences to anticipate 

both agronomic and economic impacts 

(zerine et al., 2021).  

 

Research Questions 

1. Can a CNN+LSTM hybrid 

outperform strong ML baselines for 

regional crop yield prediction? 

2. Does multimodal fusion (imagery + 

weather/soil) improve robustness 

under climate extremes? 

3. Which features/time windows drive 

predictions, and how uncertain are 

forecasts? 

Data collection 

 

 

1. Remote sensing: MODIS (250–500 

m) for dense time series; Sentinel-2 

Level-2A (10–20 m) fortnightly 

composites. NDVI, EVI, NIR, red-

edge bands, and vegetation texture 

are examples of derived indexes. 

2. Climate and meteorology: solar 

radiation, PET, VPD, precipitation, 

daily temperature (max/min), and 

gridded reanalysis or station-

interpolated sources. 

3. Soil and management: moisture 

content, organic matter, and texture; 

if accessible, optional management 

proxies (planting dates, 

cultivar/irrigation flags). 

 

Preprocessing 

 

1. Cloud masking and compositing (QA 

bands → temporal interpolation gap-

filling). 

2. zonal statistics across field polygons 

or administrative entities; spatial 

harmonization to a single grid. 

3. Temporal alignment: normalize by 

agro-climatic season (planting to 

harvest); aggregate weather to a 

corresponding cadence; resample 

imagery to weekly or monthly 

intervals. 

4. Lags, phenology markers (green-

up/peak), and cumulative stress 

measures (rising degree days, heat 

degree hours, and dry spell counts) 

are examples of feature engineering. 

5. Leave-one-year-out and region-held-

out splits are used to evaluate  
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generalization in the event of a 

distribution shift. 

6. Labels: Official yield data for target 

crops (such maize and wheat) at the 

county or district level, spanning 8–

12 years. 

 

Model Architecture 

CNN's spatial branch: 

 

Image patches or per-unit multi-band stacks 

around periods of peak growth are used as 

input. 

Backbone: lightweight CNN to extract spatial 

features (canopy vigor, texture) (e.g., 2–4 

conv blocks + global average pooling). 

Temporal LSTM branch: 

Multiple variables (weather, soil moisture, 

and time-aggregated indices) are input. 

Stack: 1–2 LSTM layers (hidden 64–128) + 

dropout; if causality is not needed, a 

bidirectional layer is unnecessary. 

Fusion involves passing through dense layers 

to scalar yield, applying attention over time 

or modalities, and concatenating CNN 

embedding with the final LSTM state. 

Loss: Heteroscedastic loss or MSE/Huber 

with uncertainty head via MC-Dropout. 

Regularization includes time-aware 

augmentation (random missingness masks), 

dropout, and early stopping. 

 

 

 

 

 

Training & Evaluation 

 Baselines: Linear regression, 

Random Forest, XGBoost, 

standalone CNN, standalone LSTM. 

 Metrics: RMSE, MAE, R2R^2R2; 

climate-extreme slices 

(drought/heatwave years); Diebold-

Mariano tests for forecast skill. 

  Robustness: train–test across 

years/regions; covariate-shift checks; 

calibration (reliability curves, CRPS 

if probabilistic). 

 Explainability: 

 CNN: Grad-CAM on index 

bands/patches to reveal spatial 

drivers. 

 Temporal: SHAP/Integrated 

Gradients for feature/time-step 

importance. 

 Ablations: remove imagery or weather; 

swap attention off; vary sequence length; 

compare ConvLSTM variant. 

Deployment Considerations 

Batch-inference pipeline using scheduled 

composites; uncertainty thresholds to flag 

low-confidence regions; simple dashboard 

for decision-makers.
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Methods 

2.1 Study Area and Datasets 

From 2011 to 2024, we collected multi-year 

crop yield data for four U.S. agricultural 

regions: the Pacific Northwest (wheat), 

California Central Valley (tomato), Great 

Plains (wheat), and US Midwest (maize) 

(Table 1). NDVI, EVI, red-edge bands, and 

texture measurements were provided by 

Sentinel-2 L2A (10–20 m) and MODIS 

(250–500 m) surface reflectance products, 

which were used as remote sensing inputs 

(Tucker, 1979; Huete et al., 2002; Drusch et 

al., 2012; Didan, 2015). Meteorological 

factors aggregated to weekly cadence during 

each crop's growth season included daily 

maximum/minimum temperature, 

precipitation, potential evapotranspiration 

(PET), solar radiation, and vapor-pressure 

deficit (VPD) from station-interpolated and 

reanalysis datasets. Where possible, soil 

layers (texture, organic matter, and surface 

soil-moisture) were combined. The official 

data for the relevant crop year and 

administrative unit were yield labels. 

To align with prior U.S. climate-risk 

assessments, we benchmark our experimental 

window and climate scenario design against 

RCP 4.5 and summarize comparable 

indicators (temperature trends, yield 

baselines, and supply-chain proxies) reported 

in earlier work. Specifically, we use 

maize/soy reference values from Midwest 

and Great Plains regions (e.g., 9.0 t/ha maize 

in 2010 with a projected decline to 8.0 t/ha 

by 2030) to set prior ranges for model 

calibration and to define extreme-year slices 

in evaluation. This harmonization allows 

direct comparison between statistical/ML 

approaches and our hybrid deep model 

(Zerine et al., 2021). 

 

2.2 Preprocessing and Feature 

Engineering 

 

Compositing and cloud masking. 

Cloud/shadow removal was done using 

Sentinel-2 QA bands and MODIS quality 

flags; linear interpolation and temporal 

median compositing were employed to fill up 

the remaining gaps. 

Harmonization of space. We calculated zonal 

statistics (means, SDs, and Haralick texture 

on NDVI/EVI) across polygons (fields or 

admin units) after reprojecting all rasters onto 

a common grid. 

alignment of time. Weather variables were 

aggregated to the same biweekly cadence 

after imagery was resampled to biweekly 

stacks. Normalization was applied to the time 

axis from planting (t = 0) to harvest (t = T). 

covariates that are designed. Heat-stress 

hours, drought-day counts, cumulative 

precipitation/PET, growing-degree days 

(GDD), and phenology markers (peak, green-

up) were all calculated. Training-fold 

statistics were used to normalize continuous 

features. 

 

2.3 Model Architecture (Hybrid CNN + 

LSTM) 

 

The proposed network has two branches: 

(CNN) spatial branch. Using multi-band 

image patches focused on peak growth 

windows, a lightweight CNN with three 
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convolutional blocks—three-by-three 

kernels, BN, ReLU, and 0.3 dropout—and 

global average pooling generates a spatial 

embedding. 

branch of time (LSTM). The multivariate 

time series (weather, soil-moisture, and 

temporally aggregated indices) are ingested 

by a 2-layer LSTM (hidden = 128, dropout = 

0.3), which produces a temporal embedding 

(Hochreiter & Schmidhuber, 1997). 

head and fusion. Concatenating embeddings 

and passing them through two dense layers 

and a modal attention module results in a 

scalar yield output. To account for predictive 

uncertainty, we train using a Huber loss plus 

an auxiliary variance head (heteroscedastic 

regression) (Huber, 1964). 

 

2.4 Training Procedure 

 

According to Loshchilov and Hutter (2019), 

we employ AdamW (lr = 3e-4 with cosine 

decay), batch size = 64, early halting 

(patience = 8), and weight decay 1e-4. To 

simulate erratic observations, inputs are 

supplemented with tiny temporal jitters and 

random missingness masks.  

 

2.5 Baselines 

 

We compare against: Linear Regression, 

Random Forest (Breiman, 2001), XGBoost 

(Chen & Guestrin, 2016), CNN-only 

(spatial) and LSTM-only (temporal). All 

baselines were tuned via grid search on 

validation folds. 

 

2.8 Reproducibility 

 

 

All experiments used PyTorch with fixed 

seeds, tracked via run manifests (code, 

commit, data hashes). Data splits and 

preprocessing pipelines are scripted and 

export figure/table artifacts directly 

 

Results 

 

3.1 Overall Performance 

 

The hybrid CNN+LSTM outperformed 

all baselines on the test folds (Table 2). 

Averaged across crops/regions, it 

achieved RMSE = 0.58 t/ha, MAE = 

0.45 t/ha, and R² = 0.84, improving 

RMSE by 22% over Linear Regression, 

26% over Random Forest, 22% over 

XGBoost, and by 16–18% relative to 

CNN-only/LSTM-only. The RMSE 

comparison is visualized in Figure 2; the 

Predicted vs. Observed scatter shows 

tight alignment around the 1:1 line 

(Figure 5), consistent with the R² values. 

 

3.2 Learning Dynamics 

The learning curve (Figure 3) indicates 

steady validation RMSE reduction with 

no divergence from training loss, 

suggesting adequate regularization and 

that the model benefits from longer 

training (until early stopping). 

Convergence was typically reached by 

epoch ~30–35. 

Figure 3. Learning curve (epochs vs. 

RMSE) — chart_learning_curve.png. 

3.3 Ablation Study 
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The complementarity of modalities is 

confirmed by ablations (Table 3). 

When imagery was removed 

("weather-only LSTM"), the RMSE 

decreased from 0.58 → 0.68 t/ha 

(+0.10) to 0.70 t/ha (+0.12) when 

weather was removed ("imagery-only 

CNN"). Performance was slightly 

harmed by turning off attention 

("concat only"), suggesting that 

attention aids in prioritizing 

important time steps and modalities 

(0.61 t/ha, +0.03). Sequence length 

was important; 24-week sequences 

were almost ideal (0.59 t/ha), but 6-

week sequences had a worsened error 

(+0.05). 

 

Ablation_Study.csv is Table 3's 

ablation study. 

 

3.4 Robustness to Climate Extremes 

 

The hybrid increased modestly from 

0.58 → 0.63 t/ha (+9%) on extreme-

year slices (drought/heat anomalies), 

while Random Forest and XGBoost 

increased by around 22% (0.78 → 

0.95 t/ha) and 18% (0.74 → 0.87 

t/ha), respectively. The hybrid 

outperformed XGBoost in year-wise 

DM tests (median p < 0.05), 

suggesting noticeably superior 

forecasting ability during difficult 

seasons. 

 

 

 

 

 

Feature Importance and Spatial 

Attribution 

 

In line with agronomic assumptions 

regarding canopy vigor and moisture/heat 

stress, global attributions (Figure 4, 

Feature_Importance.csv) show that 

NDVI_peak and EVI_avg are the primary 

drivers, followed by red-edge variance, soil-

moisture average, and temperature maxima. 

Grad-CAM maps (qualitative; not shown) 

provided confidence in spatial reasoning by 

focusing on high-biomass areas inside fields 

close to peak vegetative growth. 

 

3.5 Calibration and Uncertainty 

 

Reliability curves showed slight 

under-confidence early in the season 

that increased following canopy 

closure, while predictive intervals 

from the heteroscedastic head 

attained near-nominal coverage (e.g., 

90% PI encompassing ~88–92% of 

test targets across areas). 

 

3.6 Practical Impact 

 

Assuming regional adoption, the error 

reduction (vs. common baselines) 

implies earlier and more reliable 

identification of low-yield risk zones, 

enabling targeted irrigation/nitrogen 

strategies and inventory hedging for 

agribusiness. The inference pipeline 

supports biweekly updates aligned 

with satellite compositing windows. 
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Discussion  

Summary of principal results. 

 

This study demonstrates that for regional 

crop-yield prediction, a hybrid CNN+LSTM 

model that combines temporal weather/soil 

sequences with spatial information from 

satellite imagery performs better than single-

branch deep networks (CNN-only, LSTM-

only) and tuned statistical learners (e.g., 

linear models, Random Forest, XGBoost). 

The findings validate our central hypothesis: 

crop yield variability under climate stress is a 

reflection of temporal dynamics in heat, 

moisture, and radiation as well as spatial 

canopy patterns (represented by multi-

spectral indices and textures)—signals that 

are best modeled in combination rather than 

separately (Khaki & Wang, 2019; Jiang et al., 

2020). 

Our gains align with evidence that AI-

assisted decisions and precision irrigation can 

materially reduce water use (~40%) and 

evaporation losses (up to ~60% with drip 

systems), while sustainable practices 

(regenerative/conservation tillage, cover 

crops, agroforestry) strengthen soil and 

resilience. Improved yield forecasts therefore 

translate directly into resource targeting and 

risk reduction at farm and supply-chain levels 

(zerine et al., 2025). 

 

Multimodal gains and climate resilience. 

 

Ablation studies show that each modality has 

complementing benefits: removing 

weather/soil signals decreases resilience  

 

 

 

during extended heat/drought spells, while 

removing imaging erodes performance in 

seasons where canopy vigor and spatial 

variability predominate. A key characteristic 

under continuous warming and hydrologic 

variability is that the hybrid model 

deteriorates more gracefully in extreme-year 

slices, indicating that spatiotemporal fusion 

better captures stress episodes (e.g., 

persistent VPD/temperature anomalies 

coincident with NDVI/EVI downturns) 

(Lobell et al., 2011; Wheeler & von Braun, 

2013). 

 

Interpretability and domain consistency. 

 

In accordance with agronomic theory on 

biomass accumulation, water stress, and heat 

damage, feature attributions regularly raise 

the NDVI/EVI at peak growth, red-edge 

variability, soil-moisture, and temperature 

maxima. By focusing on high-biomass zones 

and field boundaries, qualitative saliency 

over picture patches supports the idea that the 

CNN branch learns meaningful canopy 

structure instead of sensor artifacts. 

Agronomic decision-making is facilitated 

and trust is enhanced by this model–domain 

alignment. 

 

Uncertainty for operational decisions. 

 

The system generates calibrated intervals that 

stakeholders can use to threshold activities by 

combining point predictions with 

heteroscedastic uncertainty (including MC-

Dropout sampling). For example, flag zones 

for supplemental irrigation or scouting only  
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when risk + confidence above user-set 

requirements. This directly aids risk-aware 

supply chain and insurance planning and is 

more helpful than deterministic ratings 

during turbulent seasons. 

 

Positioning within prior work. 

 

Prior studies leveraged either (i) statistical or 

tree-based models on tabular climate/soil 

features or (ii) purely image-driven deep 

models (You et al., 2017; Khaki & Wang, 

2019; Jiang et al., 2020). Our results extend 

this literature by demonstrating that late-

fusion with attention improves 

generalization across years/regions and 

retains performance under extremes. They 

also connect to systems-level evidence that 

climate shocks propagate into logistics and 

markets—heightening the value of earlier, 

more precise forecasts for policy and 

business (Zerine et al., 2021). 

 

Limitations. 

 

Label aggregation: county/district yields 

obscure within-unit variability; field-scale 

labels would sharpen supervision. 

(2) Management data gaps: planting dates, 

cultivars, irrigation, and nitrogen rates are 

incompletely observed and may confound 

responses. 

(3) Sensing gaps: optical clouds and revisit 

timing can leave critical phenophases 

undersampled; integrating SAR can mitigate. 

(4) Distribution shift: extrapolation to 

unseen climates/regions remains  

 

 

 

challenging; explicit domain adaptation is 

needed. 

(5) Compute & data demands: training 

multimodal models is resource-intensive; 

lightweight backbones and distillation should 

be explored. 

(6) Causality: explanations are associative; 

management recommendations warrant field 

trials or coupling with process-based crop 

models. 

 

Future work. 

 

In order to mitigate cloud/sparsity issues, we 

intend to: (i) fuse Sentinel-1 SAR and SMAP 

moisture; (ii) test temporal 

transformers/convLSTM and graph 

spatiotemporal models to better encode 

regional structure; (iii) integrate 

APSIM/DSSAT signals for counterfactuals 

and physics-informed constraints; (iv) apply 

domain adaptation for non-stationary 

climates; and (v) implement a calibrated 

biweekly inference pipeline with dashboards 

and active-learning loops for ground 

scouting. 

 

Conclusion 

 

To anticipate agricultural yields under 

climate variability, we provide a multimodal, 

spatiotemporal deep learning framework that 

blends LSTM-modeled weather/soil 

sequences with CNN-extracted spatial 

information from remote sensing. The hybrid 

model produces interpretable drivers that are 

in accordance with agronomic knowledge, 

calibrates uncertainty for risk-aware  
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decision-making, and outperforms strong 

baselines across a variety of U.S. areas and 

crops. It also maintains greater robustness 

during extreme seasons. 

These gains translate into actionable value, 

such as targeted irrigation and nutrient 

management, inventory and transport 

planning, climate-aware pricing and hedging, 

and earlier identification of at-risk zones, 

given documented warming trajectories and 

supply-chain vulnerabilities in U.S. 

agriculture (Lobell et al., 2011; Wheeler & 

von Braun, 2013; Zerine et al., 2021). 

Generalization and decision utility can be 

further enhanced by future additions that 

include domain adaptability, physics-

informed limitations, and SAR/soil-moisture 

sensing. The method provides a workable 

route to agronomy and agribusiness activities 

that are climate-resilient and is scalable and 

reproducible. 
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